The circle S₁ with centre C₁(a₁, b₁) and radius r₁ touches externally the circle S₂ with centre C₂(a₂, b₂) and radius r₂.
If the tangent at their common point passes through the origin then

(A)
$$(a_1^2 + a_2^2) + (b_1^2 + b_2^2) = (r_1^2 + r_2^2)$$

(B)
$$(a_1^2 - a_2^2) + (b_1^2 - b_2^2) = (r_1^2 - r_2^2)$$

(C)
$$(a_1^2 - b_1^2) + (a_2^2 - b_2^2) = r_1^2 + r_2^2$$

(D)
$$(a_1^2 - b_1^2) + (a_2^2 - b_2^2) = (r_1^2 - r_2^2)$$

Ans: (B)

From fig: we see that

$$OC_1 = a_1^2 + b_1^2$$
 (i)

$$OC_2 = a_2^2 + b_2^2$$
 (ii)

Also

$$(OM)^2 = (OC_1)^2 - (C_1M)^2 = (OC_2)^2 - (C_2M)^2$$

$$\Rightarrow a_1^2 + b_1^2 - r_1^2 = a_2^2 + b_2^2 - r_2^2$$

$$\Rightarrow$$
 (a₁² + b₁²) - (a₂² + b₂²) = $r_1^2 - r_2^2$

$$\Rightarrow$$
 $(a_1^2 - a_2^2) + (b_1^2 - b_2^2) = (r_1^2 - r_2^2)$